



# Predictive Tool for Cost reduction of SCR Installations

KEMA, the Netherlands

Leo Vredenbregt, Paul van Woesik Ronald Meijer



#### Introduction

- Introduction predictive tool
- Evaluated cases:
  - Catalyst replacement
  - Cost effective NO<sub>x</sub> removal
- Conclusions



#### Why SCR tool?

- solve questions:
  - process design and optimization
  - catalyst deactivation and life time prediction
  - catalyst replacement strategy

- make research results directly available:
  - reaction kinetics
  - deactivation







#### **Fundamental principles**



#### Result: a flexible tool!





NOxVision uses installation specific information



**Temperature distribution** 



Velocity distribution

Calculations can be made accurately





#### Catalysts represent a lot of money

- Up to 6 million EUR for a 600 MWe coal fired power plant
- Even at long life times (>10 years) considerable depreciations remain

increasing catalyst life time will result in interesting savings!



Case: high-dust SCR at coal-fired power plant

| Flue gas flow | 2x 960,000 | m <sub>0</sub> <sup>3</sup> /h (dry) |
|---------------|------------|--------------------------------------|
| Temperature   | 330        | °C                                   |
| Dust          | 15         | g/m <sup>3</sup> (dm: 10)            |

# Demands for catalyst replacement:

- start with first layer
- only after every 3 years period
- deactivation rate remains the same

| <ul> <li>deactivation</li> </ul> | Off Tolor | , out |  |  |  |
|----------------------------------|-----------|-------|--|--|--|
|                                  | 15        | years |  |  |  |
| (project lifetime)               |           |       |  |  |  |
| interest rate                    | 7.5       | %     |  |  |  |







# ye.

#### Calculation with NOxVison

- calculate catalyst replacement
- calculate cost
  - list all cost involved
  - calculate Net Present Value (start project 2003)
  - calculate the specific NO<sub>x</sub> cost

# ye

#### Catalyst replacement

Which strategy will save most money?

|          | Years in project |       |         |     |         |     |  |
|----------|------------------|-------|---------|-----|---------|-----|--|
| Strategy | 0                | 3     | 6       | 9   | 12      | 15  |  |
| 1        | L1               | L2    | L3      |     | L1      |     |  |
| 2        | L1               | L2&L3 | 10      | +L4 |         |     |  |
| 3        | L1               | +L4   | 1 13 13 | L2  |         |     |  |
| 4        | L1,L2&L          | 3     |         | +L4 |         |     |  |
| 5        | L1&L2            |       | L3      | +L4 |         |     |  |
| 6        | L1&L2            |       | +L4     |     | L1&-L3* |     |  |
| 7        | L1&L2            |       | L3&+L4  |     | 13      | THE |  |

<sup>\*</sup> L3 removed to reduce pressuse drop

# ye

#### Catalyst replacement, strategy 1



Catalyst replacement, strategy 3



# ye

#### Catalyst replacement

Which strategy will save most money?







#### Conclusions catalyst replacement

- It is strongly recommended to evaluate the optimal strategy with a predictive tool
- The use of catalyst is optimised and cost minimised
- Result: interesting savings



# Cost effective NO<sub>x</sub>-removal

Possibilities to optimize SCR economics in case of NO<sub>x</sub> trading ?



# KEMA ≼ Case:

#### high-dust SCR at coal-fired power plant

| Flue gas flow                  | 2x 1,000,000           | m <sub>0</sub> <sup>3</sup> /h (dry)                     |
|--------------------------------|------------------------|----------------------------------------------------------|
| Temperature                    | 330                    | °C                                                       |
| Dust                           | 13,4                   | g/m <sub>0</sub> <sup>3</sup> (dry, 6% O <sub>2</sub> )  |
| NO <sub>x</sub> (entrance SCR) | 700                    | mg/m <sub>0</sub> <sup>3</sup> (dry, 6% O <sub>2</sub> ) |
| SCR system                     | 2 reactors             |                                                          |
|                                | 4 layers (last empty)  |                                                          |
| Catalyst volume                | 630 (total 2 reactors) | m <sup>3</sup>                                           |
| Operating time                 | 7,200                  | hours/year                                               |
| Operating period               | 15                     | years                                                    |
| (project lifetime)             |                        |                                                          |
| interest rate                  | 7.5                    | %                                                        |



## Cost effective NO<sub>x</sub>-removal

#### Possibilities to optimize SCR economics:

- Run SCR at higher NO<sub>x</sub> removal efficiency
- Run SCR at maximum ammonia slip





#### Ammonia slip at various NO<sub>x</sub> removal rates



# **KEMA**Catalyst replacement

#### **Optimal strategies**

|                           | Years in project |   |    |                  |     |    |     |    |   |                   |           |    |    |    |    |
|---------------------------|------------------|---|----|------------------|-----|----|-----|----|---|-------------------|-----------|----|----|----|----|
| NO <sub>x</sub> reduction | 1                | 2 | 3  | 4                | 5   | 6  | 7   | 8  | 9 | 10                | 11        | 12 | 13 | 14 | 15 |
| 80%                       |                  |   |    |                  |     | 74 | +L4 |    |   | e <sup>0</sup> en |           |    |    |    |    |
| 85%                       |                  |   |    | I <sub>II.</sub> | +L4 | _= |     |    |   |                   |           | L2 |    |    |    |
| 90%                       |                  |   | L2 |                  | +L4 |    |     |    |   |                   | L3        |    |    |    |    |
| 95%                       | +L4              |   | 4  |                  | L2  |    |     | L3 |   | L1                | $\pm \pm$ | L4 |    |    |    |



# ye

#### SCR at maximum ammonia slip







**Summary results** 

Cost effective NO<sub>x</sub>-removal

Increase

set point

maximum

ammonia slip

| sults   | Extra  | ency jernoved Cost NO+     |
|---------|--------|----------------------------|
| (%)     | (kton) | (EUR/ton NO <sub>x</sub> ) |
| 80      | -      | 1353                       |
| 85      | 5.3    | 1312                       |
| 90      | 10.6   | 1290                       |
| 95      | 15.9   | 1277                       |
| 96 - 80 | 10.7   | 1190                       |





# **Conclusions Cost effective NO<sub>x</sub>-removal**

- Ideas to improve process operation can be evaluated in advance
- The SCR can be used more cost effectively
- Result: interesting earnings (in case of NO<sub>x</sub> trading)





#### **Conclusions**

- Operational cost of SCR systems can often be reduced
- Calculation model NOxVision has proven to be very useful and accurate in practice
  - Catalyst management
  - Cost optimization (in case of NO<sub>x</sub>-trading)
  - Optimization flue gas flow conditions

